Effect of Adding Inorganic Salts on the Morphologies and Pore Channels of SBA-15

ZHAO Hui-ling, ZHAO Qun-chao, SONG Jiang-chuang, HU Jun
(Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China)

Abstract: In this paper, high-quality SBA-15 samples were prepared by using the triblock copolymer P123 as structure-directing agent, tetraethylorthosilicate (TEOS) as silicon source under different acidic conditions. The influences of adding inorganic salts (Na⁺, K⁺, Br⁻, I⁻, SO₄²⁻, H₂PO₄⁻) on the synthesis of mesoporous materials were investigated. The XRD patterns and N₂ adsorption-desorption isotherms show that samples still preserved the ordered hexagonal structure and high BET surface area after adding inorganic salts. The species and amounts of inorganic salts influenced obviously the morphologies and pore channels of SBA-15.

Key words: SBA-15; sodium salt; potassium salt; morphologies; pore channels
貌的介孔材料，不同形貌的介孔分子筛能满足物理、化学、生物等领域中的多种需求。本文系统地考察了在酸性条件下，几种无机盐对合成 SBA-15 介孔分子筛形貌的影响并分析其影响原因。

1 实验部分

1.1 样品的制备

1.1.1 母液的制备 将 16 g P123（Aldrich 公司，相对平均分子质量 5800）和 372 g 去离子水，搅拌后密封静置 24 h 使 P123 完全溶解，然后保存在 1000 mL 的电池瓶中待用，记作 A 母液；将 16 g P123 和 372 g 去离子水以及 106.4 g 混合酸，搅拌后密封静置 24 h 使 P123 完全溶解，保存在 1000 mL 的电池瓶中待用，记作 B 母液。

1.1.2 母液的制备

(1) 样品 1(SBA-15-NaCl-n 和 SBA-15-KCl-n)

分别取 A 母液 24.3 g 加入到两个相同的恒温槽中，编号为 1,2, 分别加入浓盐酸 4.48 mL、3.92 mL，在 40 ℃时搅拌 15 min；然后分别加入 0.013 4, 0.020 2 mol NaCl, 搅拌 30 min；再分别加入硅源 TEOS 2.2 g，40 ℃下搅拌 24 h，再分别加入硅源 TEOS 2.2 g，40 ℃下搅拌 24 h，最后在 550 ℃下焙烧，存储于干燥器中备用。样品根据加入 NaCl 的量不同分别记为 SBA-15-NaCl-n (n 为加入无机盐的物质的量，以下同)。

实验步骤如下，以 KCl 代替 NaCl，n 分别为 0.013 4, 0.020 2 mol，产物记为 SBA-15-KCl-n。

(2) 样品 2(SBA-15-NaX-n 和 SBA-15-KX-n) (X 为阴离子)

分别取 B 母液 31.0 g 加入到两个相同的恒温槽中，编号为 3,4, 依次加入 0.007 2, 0.019 2 mol NaBr, 搅拌 30 min，再加入硅源 TEOS 2.2 g，40 ℃下搅拌 24 h，再分别加入硅源 TEOS 2.2 g，40 ℃下搅拌 24 h，最后在 550 ℃下焙烧，存储于干燥器中备用。记为 SBA-15-NaBr-n (n = 0.007 2, 0.019 2)。

实验步骤同上，分别以 NaH2PO4, KI, K2SO4 代替 NaBr。相应的产物分别记为 SBA-15- NaH2PO4-n, SBA-15-KI-n, SBA-15-K2SO4-n (n = 0.007 2, 0.019 2)。

1.2 样品的表征

采用日本理学 D/Max 2550 VB/PC 型 X-射线衍射仪(XRD) 进行介孔分子筛样品的物相分析，使用 Cu Kα 为射线源，管压 40 kV, 管流 200 mA, 小角度扫描范围为 0.6°~8°。样品的吸脱附等温线(BET) 在 Micrometrics 公司 ASAP-2020 型物理吸附仪上测量，吸附质为 N2，温度为液氮温(-196 ℃)，测量样品在 150 ℃下保持 10 h 以上，样品的比表面积由 BET 法、孔径分布由 BJH 法处理得到。样品的形貌在 JEOL 公司的 JSM-6360LV 型扫描电子显微镜下观测。

2 结果和讨论

2.1 阳离子对 SBA-15 的影响

SBA-15-NaCl-0.013 4 和 SBA-15-KCl-0.013 4 的小角 XRD 衍射谱图如图 1 所示。图 1(a)中显示在 28 为 0.975°, 1.671°和 1.915°的位置分别出现了衍射峰，相对衍射晶面分别为 (100), (110) 和 (200)，表明 SBA-15-NaCl-n 为典型的六方介孔结构。图 1(b)中显示在 28 为 0.933°, 1.612°和 1.871°的位置分别出现了衍射峰，相对衍射晶面分别为 (100), (110) 和 (200)，表明 SBA-15-KCl-n 也为典型的六方介孔结构。说明 NaCl 和 KCl 的加入基本不影响介孔材料 SBA-15 孔道结构的规整度，仍为规整的六方孔道结构。
0.013 4强。因此，当其他条件相同时，Na+ 比 K+ 在维持孔道结构的稳定性效果更为显著。分析其原因，Na+ 和 K+ 与表面活性剂的亲水基作用，导致胶束产生一定的变化，Na+ 离子半径比 K+ 半径小，因而其对表面活性剂的作用也较小。

图 2 为 SBA-15-NaCl-n 和 SBA-15-KCl-n 的 N2 吸脱附等温线图(插图为孔径分布图)，从图中可以看出不同酸度下的脱附吸附曲线趋势大致相同，且在整个酸度范围内所有样品在相对压力为 0.6～0.9 都出现了明显的滞后环，为典型的 IV 类型滞后环。因此，在一定的酸度范围内，NaCl 和 KCl 的加入均能使 SBA-15 维持较佳的介孔结构。从孔径分布图中可以看出所有样品的峰值均较窄，且分布均一，为规整的六方孔道结构。

![Image 1](image1.png)

图 2 SBA-15-NaCl-n(a) 和 SBA-15-KCl-n(b) 的 N2 吸脱附曲线(插图为孔径分布图)

表 2 所示为 SBA-15-NaCl-n 和 SBA-15-KCl-n 的孔结构参数，Vn 为脱附孔体积，从表中可以看出，随着 H+ 物质的量的减小，Na+ 和 K+ 物质的量的增大，样品的比表面积(S) 比纯硅基 SBA-15 的比表面积有所降低。纯硅基介孔 SBA-15 的平均孔径(rp) 为 7.4 nm 左右，而表中的孔径数据表明，Na+ 和 K+ 的加入均使样品孔径略有减小。且在相同条件下，K+ 对 SBA-15 孔道结构的影响更为显著。

表 1 SBA-15-NaCl-n 和 SBA-15-KCl-n 的孔结构参数

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>n_{HCl}^{-1}</th>
<th>S/(m^2·g^{-1})</th>
<th>V_{t}/(cm^3·g^{-1})</th>
<th>r_{p}/nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure SBA-15^{[55]}</td>
<td>-</td>
<td>-</td>
<td>548</td>
<td>0.95</td>
<td>7.4</td>
</tr>
<tr>
<td>SBA-15-NaCl-n</td>
<td>0.013 4</td>
<td>2.18</td>
<td>441</td>
<td>0.93</td>
<td>6.7</td>
</tr>
<tr>
<td>SBA-15-KCl-n</td>
<td>0.020 2</td>
<td>3.17</td>
<td>589</td>
<td>1.01</td>
<td>6.1</td>
</tr>
<tr>
<td>SBA-15-KCl-n</td>
<td>0.020 2</td>
<td>3.17</td>
<td>453</td>
<td>0.85</td>
<td>6.2</td>
</tr>
<tr>
<td>SBA-15-KCl-n</td>
<td>0.020 2</td>
<td>3.17</td>
<td>479</td>
<td>0.86</td>
<td>6.0</td>
</tr>
</tbody>
</table>

纯硅基 SBA-15 为短棒状的聚合体，这从 SBA-15-NaCl-n 和 SBA-15-KCl-n 的 SEM 图(图 3) 可以较为直观地看出，对于 SBA-15-NaCl-n, n=0.013 4 时，SBA-15 呈颗粒状聚集，与纯硅基 SBA-15 的形貌类似。随 NaCl 加入量增大，其形貌特征呈长棒状，轴比变小。而对于 SBA-15-KCl-n, n=0.013 4 时，样品的表面为粗糙状，较为空洞；n=0.020 2 时，粗糙状样品轴比增大，为长棒状，表面较为粗糙。因此，加入 NaCl 和 KCl 后样品的形貌与纯硅基 SBA-15 的形貌有明显区别，且在 n=0.013 4 时，K+ 对样品形貌的影响比 Na+ 更明显。

综上所述，Na+ 和 K+ 对 SBA-15 的孔道结构有一定的影响，但对样品的形貌均有较大影响，相对而言，K+ 对 SBA-15 形貌的调控作用更为明显，与图 1 中 XRD 结果一致，K+ 半径更大，因而对表面活性剂胶束的影响更大，孔道结构参数变化也相对明显。

2.2 阴离子对 SBA-15 的影响

2.2.1 SBA-15-NaX-n

图 4 所示分别为 SBA-15-NaBr-n 和 SBA-15-NaH_{2}PO_{4}-n 的吸脱附曲线。从中可以看出，在相对压力为 0.6～0.9 时，SBA-15-NaBr-n 出现了明显的滞后环，为典型的六方介孔结构；而 SBA-15-NaH_{2}PO_{4}-n 在相对压力为 0.4～0.9 时虽然也有一定程度的滞后，但是较为微弱，其孔道结构没有一定的改变。插图为 SBA-15-NaBr-n 和 SBA-15-NaH_{2}PO_{4}-n 的孔径分布图，从中可以看出在 SBA-15-NaBr-n 孔径较窄，且分布均匀；而 SBA-15-NaH_{2}PO_{4}-n 孔径也较窄，但分布不太均匀。

表 2 所示为 SBA-15-NaBr-n 和 SBA-15-NaH_{2}PO_{4}-n 的孔结构参数，从表中可以看出，比表面积(S) 在 NaBr 存在时比 NaH_{2}PO_{4} 存在时要大，且
图 3 SBA-15-NaCl-0.013 4 (a)、SBA-15-NaCl-0.002 0 (b)、SBA-15-KCl-0.013 4 (c) 和 SBA-15-KCl-0.002 0 (d) 的 SEM 图

Fig. 3 SEM patterns of SBA-15-NaCl-0.013 4 (a)、SBA-15-NaCl-0.002 0 (b)、SBA-15-KCl-0.013 4 (c) and SBA-15-KCl-0.002 0 (d)

孔径（rd）也相对较大，尤其是当加入 0.007 2 mol NaBr 时，其比表面积达到了 671 m²/g。此外，改变 NaBr 或者 NaH₂PO₄ 用量，样品各孔结构参数也发生较大的改变。

表 2 SBA-15-NaBr-n 和 SBA-15-NaH₂PO₄-n 的孔结构参数

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Characteristics of SBA-15-NaBr-n and SBA-15-NaH₂PO₄-n</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>V_H₂O / mL</td>
</tr>
<tr>
<td>SBA-15-NaBr-n</td>
<td>0.007 2</td>
</tr>
<tr>
<td>SBA-15-NaBr-n</td>
<td>0.018 2</td>
</tr>
<tr>
<td>SBA-15-NaH₂PO₄-n</td>
<td>0.007 2</td>
</tr>
<tr>
<td>SBA-15-NaH₂PO₄-n</td>
<td>0.018 2</td>
</tr>
</tbody>
</table>

图 4 SBA-15-NaBr-n(a) 和 SBA-15-NaH₂PO₄-n(b) 的 N₂ 吸附脱附曲线（插图为孔径分布图）

Fig. 4 N₂ adsorption and desorption isotherms of SBA-15-NaBr-n(a) and SBA-15-NaH₂PO₄-n(b) (the inserts are corresponding pore size)

NaH₂PO₄-0.019 2 的 SEM 图，从图中可以看出，加入 NaBr 的 SBA-15 基本呈条状，且长度长了许多颗粒状的分支，分布较为复杂，而加入 NaH₂PO₄ 的 SBA-15 成片状，且大小不一，存在一定聚集现象，分布也较为复杂。对比两者，形状上有一定的差异。

综上所述，当阳离子为 Na⁺ 时，阴离子的改变对 SBA-15 的孔道结构和形态有较大影响。Br⁻ 的加入可以维持较佳的孔道结构，而 Br⁻ 的加入可以进一步改变其形态，H₂PO₄⁻ 的加入使得 SBA-15 的有序程度有所降低。

2.2.2 SBA-15-KX-n 图 6 所示分别为 SBA-15-KX-n 和 SBA-15-K₂SO₄-n 的吸脱附曲线图（插图为孔径分布图）。分析各自的曲线可以看出它们在相对压力为 0.6~0.9 时都出现了明显的滞后环，是典
型的 SBA-15 类型的滞后环，且各自的六方介孔结构都保持得较好。从 SBA-15-KI-n 和 SBA-15-
K₂SO₄-n 的孔径分布图中可以看出两者的孔径都较窄，且分布均匀。

图 5 SBA-15- NaBr-0.019 2(a) 和 SBA-15- NaH₂PO₄-0.019 2(b) 的 SEM 图
Fig. 5 SEM patterns of SBA-15- NaBr-0.019 2(a) and SBA-15- NaH₂PO₄-0.019 2(b)

图 6 SBA-15- KI-n(a) 和 SBA-15- K₂SO₄-n(b) 的 N₂ 吸附脱附曲线图（插图为孔径分布图）
Fig. 6 N₂ adsorption and desorption isotherms of SBA-15- KI-n(a) and SBA-15-
K₂SO₄-n(b) (the inserts are corresponding pore size)

表 3 所示为 SBA-15-KI-n 和 SBA-15-K₂SO₄-n 的孔结构参数，从中可以看出，加入 K₂SO₄ 时比表面积 S 与纯硅基 SBA-15 比表面积差别不大，但孔径 (rₚ) 变小；加入 KI 时，比表面积降低幅度较大，而孔径增加，且改变各自离子浓度其比表面积和孔径也发生了改变。因此，不同的阴离子对 SBA-15 的孔道结构有一定程度的影响。

表 3 SBA-15- KI-n 和 SBA-15- K₂SO₄-n 的孔结构参数
Table 3 Characteristics of SBA-15- KI-n and
SBA-15- K₂SO₄-n

<table>
<thead>
<tr>
<th></th>
<th>Vₒ(mL)</th>
<th>S(㎡·g⁻¹)</th>
<th>Vₚ(㎡·g⁻¹)</th>
<th>rₚ(nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBA-15-KI-n</td>
<td>0.007 2</td>
<td>4.48</td>
<td>413</td>
<td>1.06</td>
</tr>
<tr>
<td>SBA-15-KI-n</td>
<td>0.019 2</td>
<td>4.48</td>
<td>381</td>
<td>1.12</td>
</tr>
<tr>
<td>SBA-15-K₂SO₄-n</td>
<td>0.007 2</td>
<td>4.48</td>
<td>560</td>
<td>1.10</td>
</tr>
<tr>
<td>SBA-15-K₂SO₄-n</td>
<td>0.019 2</td>
<td>4.48</td>
<td>558</td>
<td>1.06</td>
</tr>
</tbody>
</table>

图 7 所示为 SBA-15-KI-n 和 SBA-15- K₂SO₄-n 的 SEM 图。从图中可以看出，加入一定量的 KI 后，
SBA-15 基本呈片状，且较为杂乱，大小不一。加入 K₂SO₄ 的 SBA-15 同时具有片状和棒状，且分布较为稀疏，形貌改变较为明显。因此，不同的阴离子对 SBA-15 形貌有较大影响。因此，当阳离子为 K⁺ 时，Cl⁻ 和 SO₄²⁻ 的加入对 SBA-15 的孔道结构和形貌有调控作用。相对而言，SO₄²⁻ 在孔道结构和形貌方面调控更为显著。

对于阴离子改变样品形貌的原因分析如下：在酸性条件下，SBA-15 的合成遵循 S°⁻(XI)⁺ 合成机理，Cl⁻ 吸附在 P123 表面活性剂胶束上，进而体系中阳离子（包括 H⁺）以静电作用力吸附在胶束表面，体系中除 Cl⁻ 之外的其他阴离子也参与到胶束表面的吸附，明显改变了胶束表面的表面能，因而改变了样品的形貌。当阳离子一定时，阴离子的改变对 SBA-15 的孔道结构有一定影响，对样品形貌都有显著的影响；此外，NaBr 及 K₂SO₄ 的加入使 SBA-15 的比表面积较高，均大于 500 ㎡/g，且形貌变化较大。而 NaH₂PO₄ 和 KI 的加入不利于生成规整的六方孔道结构，比表面积为 300～420 ㎡/g。
3 结 论

采用三嵌段共聚物 P123 为模板剂，正硅酸乙酯 TEOS 为无机硅源，在酸性条件下，通过加入不同的无机盐，合成了具有不同形貌的有序介孔氧化硅 SBA-15。实验发现，不同酸度下，KCl 和 NaCl 的加入对 SBA-15 的孔道结构以及形貌均有一定的影响。相对而言，KCl 的加入影响更大。当体系中盐酸加入量一定、阳离子固定为 Na⁺ 或 K⁺ 时，阴离子显著影响样品的形貌，原因是阴离子吸附在表面活性剂胶束表面，改变了胶束的表面能，从而改变了样品的形貌。加入 NaH₂PO₄ 和 KI 时样品的比表面积有所减少，而孔径显著降低，使得 SBA-15 的有序介孔结构有一定程度的降低。比较在酸度以及无机盐不同的体系中 SBA-15 的形貌，可以发现 SBA-15 形貌变化较大且多为棒状，而通过改变盐的种类以及加入量，一定程度上能实现向片状过渡。

参考文献：

