邱志强, 王 杰, 袁镇豫, 史玉琳, 郭旭虹
(华东理工大学化学工程联合国家重点实验室,上海 200237)
摘要:利用环糊精(CD)在碱性溶液中原位还原硝酸银制得环糊精包覆的银纳米粒子,并通过透射电镜、红外光谱和紫外分光光度计对其进行表征。实验结果表明,在适当的pH和环糊精浓度下制备得到的银纳米粒子的粒径很均一,但是碱性过强(pH>12)或环糊精浓度太低(cCD<0.025 mmol/L)会导致银纳米粒子团聚。在对硝基苯酚的还原实验中发现环糊精包覆的银纳米粒子具有很好的催化活性,而且β-环糊精和γ-环糊精包覆的银纳米粒子的催化活性高于α-环糊精包覆的银纳米粒子。
关键词:环糊精; 银纳米粒子; 催化; 对硝基苯酚
图1 银纳米粒子制备示意图
Fig.1 Schematic illustration of the preparation of Ag-NP
纳米金属颗粒尺寸较小,具有极大的比表面积,表现出与宏观材料显著不同的化学物理性质[1],被广泛应用于催化剂[2]、医学[3]以及电子工业[4]等领域。纳米金属容易发生团聚,影响使用效率[5],所以经常在合成纳米金属时加入修饰剂或载体来阻止其团聚,例如树枝状大分子[6]、微凝胶[7]和聚合物刷[8]等。在各种纳米金属中,纳米银由于在催化[9]、抗菌[3] 和材料修饰[10-11]等方面表现突出,从而成为纳米金属领域的一个研究热点。
值得注意的是,目前研究者开始尝试用更加绿色环保的方法来合成纳米金属。例如文献[12]用葡萄糖作为还原剂,淀粉作为稳定剂,在水溶液中成功合成了银纳米粒子。Liu等[13]利用葡萄糖作为还原剂和稳定剂,在弱酸性环境中制备得到金纳米粒子。环糊精(CD)[14]呈中空圆台型结构, 其内疏水外亲水的特性,可以包裹疏水性有机分子,将许多有机相反应转移到水相中,提高了反应的经济性和环保性。
本文选择环糊精作为还原剂和稳定剂,在弱碱性水溶液中原位还原硝酸银制备得到粒径均一的银纳米粒子,并探究其催化活性。
硝酸银,分析纯,国药集团化学试剂有限公司;α/β/γ-环糊精,分析纯,国药集团化学试剂有限公司;对硝基苯酚,分析纯,上海凌峰化学试剂有限公司;氢氧化钠,分析纯,上海凌峰化学试剂有限公司;硼氢化钠,分析纯,上海天莲化工科技有限公司;去离子水,实验室自制。
高倍透射显微镜(HR-TEM),JEOL 2100F;紫外分光光度计,岛津UV2550;傅里叶红外光谱仪(FT-IR),Bruker Vertex 70;Zeta电位仪,NICOMPTM 380 ZLS型。
环糊精包覆的银纳米粒子的制备过程如图1所示,在100 mL三口烧瓶中,加入去离子水29 mL、5 mmol/L 环糊精溶液20 mL、10 mmol/L硝酸银溶液1 mL,并用磁力搅拌器搅拌混合均匀。然后用1 mol/L氢氧化钠溶液调节溶液pH,在60 ℃下反应2 h,制备得到银纳米粒子(Silver Nanoparticles,Ag-NP)。
分别取不同浓度的β-环糊精制备得到不同的银纳米粒子,其UV-vis吸收光谱如图2所示。从图2可以看出,环糊精浓度较低时,生成的银纳米粒子的UV-vis吸收峰红移很明显,且吸收峰变宽,意味着合成的银纳米粒子的粒径变大。这是由于环糊精起到还原剂和稳定剂的作用,当环糊精浓度升高时,环糊精还原硝酸银生成的纳米金属银的成核点变多,再加上环糊精作为稳定剂,也阻止了银纳米粒子的靠拢和聚并。
图2 不同浓度β-CD制得的银纳米粒子的UV-vis吸收光谱(pH=10.19)
Fig.2 UV-visible absorption spectra of Ag-NP prepared by different concentrations of β-CD (pH=10.19)
图4 包覆前后的β-环糊精红外光谱图
Fig.4 FT-IR spectra of free β-CD and β-CD-capped Ag-NP
pH在银纳米粒子的形成过程中起着重要的作用,不同pH下制得银纳米粒子的UV-vis吸收光谱如图3所示。从图3可以看到,在酸性环境下(pH<7),即使延长反应时间,溶液中也没有银纳米粒子生成(紫外光谱为一条直线);而在碱性环境下(pH>7),反应 2 h,紫外光谱图中有明显的银纳米粒子的特征吸收峰。这是由于碱性环境有利于环糊精上羟基的质子化,提高了环糊精的还原能力[15]。实验还发现,溶液碱性太强(pH > 12)会导致银纳米粒子团聚,原因可能是环糊精上羟基质子化过多,静电作用不能很好包覆在银纳米粒子表面。
图3 不同pH下制得银纳米粒子的UV-vis吸收光谱(cβ-CD=2.0 mmol/L)
Fig.3 UV-visible absorption spectra of Ag-NP at different pH (cβ-CD=2.0 mmol/L)
在银纳米粒子的制备中,环糊精起到了还原剂和稳定剂的作用。图4示出了包覆前后的β-环糊精红外光谱图。从图4可以看出,1 716.6 cm-1处的新增峰为CO的伸缩振动吸收峰,这是由于环糊精上的羟基将溶液中的Ag+还原成Ag-NP,自身被氧化成羧基[15]。环糊精包覆的银纳米粒子的Zeta电位值稳定在-40 mV左右,说明还原反应后,环糊精上的羧基能和银纳米粒子形成很好的Ag-COO- 相互作用,更有利于稳定银纳米粒子[15]。
图5 不同环糊精包覆的银纳米粒子的TEM图
Fig.5 TEM images of different CD-capped Ag-NPs
不同环糊精原位还原法制得的银纳米粒子的TEM如图5所示,从图中可以看到,环糊精包覆的银纳米粒子的粒径很均一,用Nano Measure软件统计得到α/β/γ-环糊精包覆的银纳米粒子的粒径分别为 18.25、16.46、18.54 nm。
对硝基苯酚的还原反应是检验纳米金属催化效率的模型反应[16]。取3 mL 已经配制好的对硝基苯酚(4-NP)和硼氢化钠(NaBH4)的混合溶液(c4-NP=0.1 mmol/L; cNaBH4=20 mmol/L)于比色皿中,加入银纳米粒子催化剂,混合均匀后,立即用UV-vis 分光光度计在250~500 nm的波段每隔2 min 扫描一次。如图6所示,加入银纳米粒子催化剂后,400 nm处对硝基苯酚钠的紫外吸收峰随着反应的进行逐渐降低,300 nm处对氨基苯酚钠的紫外吸收峰逐渐升高,280 nm处和310 nm处为对硝基苯酚还原反应的2个等吸光度点(Isosbestic Point)。
图6 银纳米粒子催化对硝基苯酚还原反应的UV-vis吸收光谱随时间的变化(T=293.15 K)
Fig.6 Time dependence of UV-vis spectra for the reduction of 4-NP by NaBH4 in the presence of Ag-NP at 293.15 K
在对硝基苯酚的还原实验中,硼氢化钠是大大过量的,因此,在整个反应过程中,可以将硼氢化钠的浓度看成常数,此时该反应便可以看作是“拟一级”反应,反应动力学方程见式(1):
(1)
式中:ct是t时刻4-NP的浓度;kapp是催化剂表观反应速率;S是单位体积催化剂表面积;k是单位催化面积的催化反应速率。
测试不同环糊精制备得到的银纳米粒子在不同温度(288.15、293.15、298.15、303.15、308.15 K)下催化对硝基苯酚的反应动力学,得到不同温度下的催化反应速率k,如图7所示。
根据阿仑尼乌斯方程:
k=Ae-Ea/RT
(2)
式中:R是理想气体常数;T是反应温度。表观活化能Ea可以从ln k和T-1的线性拟合中求得。从图7可以看到,β-环糊精包覆的银纳米粒子催化对硝基苯酚的活化能最小,α-环糊精包覆的银纳米粒子的活化能最大;从催化速率来看,γ-环糊精和β-环糊精包覆的银纳米粒子的催化活性明显高于α-环糊精包覆的银纳米粒子,这可能是由于β-环糊精和γ-环糊精的空腔较大,更有利于反应底物对硝基苯酚钠通过环糊精(稳定剂)接触到纳米金属表面。
图7 不同环糊精包覆的银纳米粒子的ln k与T-1 的关系
Fig.7 Plot of ln k versus T-1 with different CD-capped Ag-NPs
本文利用环糊精作为还原剂和稳定剂,在碱性水溶液中制备得到窄粒径分布的银纳米粒子,并研究了pH和环糊精浓度对银纳米粒子粒径的影响,发现碱性太强和环糊精浓度太低会导致银纳米粒子团聚。在催化对硝基苯酚的实验中发现,β-环糊精包覆的银纳米粒子催化对硝基苯酚的活化能最小,并且β-环糊精和γ-环糊精包覆的银纳米粒子的催化活性明显高于α-环糊精,这可能是与环糊精的包合作用和空腔尺寸有关。
参考文献:
[1] BURDA C, CHEN X D, NARAYANAN R, et al. Chemistry and properties of nanocrystals of different shapes[J]. Cheminform, 2005, 36(27): 1025-1102.
[2] LIU J J, WANG J, ZHU Z M, et al. Cooperative catalytic activity of cyclodextrin and Ag nanoparticles immobilized on spherical polyelectrolyte brushes[J]. AIChE Journal, 2014, 60(6): 1977-1982.
[3] LIU X C, XU Y, WANG X H, et al. Stable and efficient loading of silver nanoparticles in spherical polyelectrolyte brushes and the antibacterial effects[J]. Colloids and Surfaces B: Biointerfaces, 2015, 127: 148-154.
[4] WANJALA B N, FANG B, LUO J, et al. Correlation between atomic coordination structure and enhanced electrocatalytic activity for trimetallic alloy catalysts[J]. Journal of the American Chemical Society, 2011, 133(32): 12714-12727.
[5] LU Y, MEI Y, DRECHSLER M, et al. Ag nanocomposite particles: Preparation, characterization and application[J]. Macromolecular Symposia, 2007, 254: 97-102.
[6] SCOTT R W, WILSON O M, CROOKS R M. Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles[J]. Journal of Physical Chemistry B, 2005, 109(2): 692-704.
[7] WANG M, WANG J, WANG Y M, et al. Synergetic catalytic effect of α-Cyclodextrin on silver nanoparticles loaded in thermosensitive hydrogel[J]. Colloid and Polymer Science, 2016, 294(6): 1087-1095.
[8] SHARMA G, BALLAUFF M. Cationic spherical polyelectrolyte brushes as nanoreactors for the generation of gold particles[J]. Macromolecular Rapid Communications, 2004, 25(4): 547-552.
[9] LU Y, MEI Y, DRECHSLER Markus, et al. Thermosensitive core-shell particles as carriers for Ag nanoparticles: Modulating the catalytic activity by a phase transition in networks[J]. Angewandte Chemie-International Edition, 2006, 45(5): 813-816.
[10] ARMELAO L, BOTTARO G, CAMPOSTRINI R, et al. Synthesis and structural evolution of mesoporous silica silver nanocomposites[J]. Nanotechnology, 2007, 18(15): 625-637.
[11] GUPTA P, BAJPAI M, BAJPAI S K. Investigation of antibacterial properties of silver nanoparticle-loaded poly (acrylamide-co-itaconic acid)-grafted cotton fabric[J]. Journal of Cotton Science, 2008, 12(3): 280-286.
[12] RAVEENDRAN P, FU J, WALLEN S L. Completely “green” synthesis and stabilization of metal nanoparticles[J]. Journal of the American Chemical Society, 2003, 125(46): 13940-13941.
[13] LIU J, QIN G W, RAVEENDRAN P, et al. Facile “green” synthesis, characterization, and catalytic function of β-D-glucose-stabilized Au nanocrystals[J]. Chemistry: A European Journal, 2006, 12(8): 2131-2138.
[14] 张震, 谭连江, 龚兵, 等. 基于“分子胶”的新型两亲性嵌段共聚物β-CD-PLA的合成及其胶束化[J]. 功能高分子学报, 2017, 30(3): 321-326.
[15] HUANG T, MENG F, QI L M. Facile synthesis and one-dimensional assembly of cyclodextrin-capped gold nanoparticles and their applications in catalysis and surface-enhanced raman scattering[J]. The Journal of Physical Chemistry C, 2009, 113(31): 13636-13642.
[16] HERVES P, PEREZ-LORENZO M, LIZ-MARZAN L M, et al. Catalysis by metallic nanoparticles in aqueous solution: Model reactions[J]. Chemical Society Reviews, 2012, 41(17): 5577-5587.
QIU Zhi-qiang, WANG Jie, YUAN Zhen-yu, SHI Yu-lin, GUO Xu-hong
(State Key Laboratory of Chemical Engineering, East China University ofScience and Technology, Shanghai 200237, China)
Abstract: Metal nanoparticles exhibited different physicochemical properties as compared to their bulk materials due to their high surface-to-volume ratio, which had a broad application prospect. However, the tendency of aggregation of nanoparticles must be overcome by using suitable capping agents. The capping agents played a significant role in stabilizing the metal nanoparticles and influenced their catalytic performance. Therefore, it’s necessary to find the proper capping agents of metal nanoparticles. A facile and effective method to produce silver nanoparticles (Ag-NPs) in a water solution was reported. Cyclodextrin (CD), a soluble nontoxic molecule, was made up of six, seven, or eight glucose units, called α-, β-and γ-CD, respectively. Due to their unique hydrophobic cavities, CDs were used as an eco-friendly capping agent to stabilize the Ag-NPs by the hydrophobic interactions with the apolar primary faces of CD. In this paper, CD-capped silver nanoparticles were synthesized in an alkaline aqueous solution by reducing silver nitrate with CD and the synergetic catalytic effect between Ag-NP and different kinds of CDs was investigated. Then TEM, FT-IR and UV-vis spectroscopy were employed to characterize the synthesized Ag-NP. It was revealed that the size distributions of Ag-NP prepared in proper pH and CD concentration were quite uniform and could be controlled (10—30 nm). And a higher pH (pH>12) or lower CD concentration (cCD<0.025 mmol/L) would lead to the aggregation of Ag-NP during the synthesis procedure. Recently, it was reported that the CDs and Ag-NP had cooperative catalytic activity during the 4-nitrophenol (4-NP) reduction reactions. During the reaction, the CD-capped Ag-NP had a strong catalytic effect on the reduction of 4-NP, and it was found that β-and γ-CD-capped Ag-NP had a better catalytic activity than that of α-CD-capped Ag-NP. The activation energy of β-CD-capped Ag-NP in the reduction of 4-NP was calculated to be 48.1 kJ/mol, which is lower than that of α-and γ-CD-capped Ag-NP.
Key words: cyclodextrin; silver nanoparticles; catalysis; 4-nitrophenol
收稿日期:2017-04-06
基金项目:国家自然科学基金(51403062);中央高校基本科研业务费探索研究专项基金;中国博士后科学基金(2014M561426)
作者简介:邱志强(1992-),男,硕士生,主要从事聚合物负载纳米金属的研究。
通信联系人:王 杰,E-mail: jiewang2010@ecust.edu.cn;郭旭虹,E-mail: guoxuhong@ecust.edu.cn
文章编号:1006-3080(2018)02-0145-05
DOI:10.14135/j.cnki.1006-3080.20170404002
中图分类号:O643.36
文献标志码:A